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The animal didn't cross the street because [t was too tired.
L'animal n'a pas traversé la rue parce qufl était trop fatigué.

The animal didn't cross the street because [t was too wide.
L'animal n'a pas traversé la rue parce qugllé était trop large.



Agenda

* Provide foundation for
* BERT (Bidirectional Encoder Representation from Transformers)
e Assumption: Familiarity with
* RNN/LSTM, Encoder-Decoder Architecture and Attention Mechanism



Why Transformer Network

* Addresses drawbacks of RNN based architecture
e Hard to parallelize
 Difficulty in learning long range dependencies
* Complex

* It uses only attention — No RNN or CNN

[1] Vasvani A., et. al. Attention Is All You Need
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Full Model Architecture
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Full Model Architecture
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Scaled Dot Product Attention

 Dot-Product Attention
* Query(Q): Sy,
* Keys(K): [hy, hy, ..., hy]
* Values(V): [hy, h,, ..., hy]

Attention(Q, K, V) = softmax(QK)V ~

...................

[1] Vasvani A., et. al. Attention Is All You Need



Scaled Dot Product Attention

 Dot-Product Attention
* Query(Q): Sy,
* Keys(K): [hy, hy, ..., hy]
* Values(V): [hy, h,, ..., hy]

Query 2 -

Keys & Values 2

Attention(Q, K, V) = softmax(QK)V ~ 64
. t
* Scaling MatMul ] L 1L
* For large dimension, QKT will explode Soﬁ’Max | = i = +_ S ‘_ (__ .
* Softmax --> extremely small 1 1 07 LT
Mask (opt. | | | | ~ ‘
OKT — 4(Op ) X XK X Xy
Attention(Q, K, V') = softmax( W S
Vdg 1
MatMul
d, is dimension of key (e.g. 64) t 1
Q K V

[1] Vasvani A., et. al. Attention Is All You Need



Multi Head Attention

MultiHead(Q,K,V) =
* Apply different attention at different positions Concat(head,, ..., heady)
* Split Q, K, V of size 512 into 8 parts of size 64
e Calculate attention in 8 different heads
[ Concat ]

headg 2.4

Scaled Dot-Product

head; = Attention(QW;<, KW;X, VIW;V) head; > ,
Attention

Attention on
Projection of Query with Weight W<
Projection of Key with Weight W,k
Projection of Value with Weight W,V

[1] Vasvani A., et. al. Attention Is All You Need



Multi Head Attention 1 522
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Embedding and Positional Encoding

 Embedding:
» Source and target sequences (tokens)
* dmode/ =512

 Positional Encoding (fixed):
* Need to include position information

e Use sine and cosine functions of different
frequencies

e Dimension =512

 Embedding and Positional Encoding
 Are added and fed to Encoder and Decoder

Decoder
Encoder e

512 512
Positional Positional
Encoding 512 512 %>_® Encoding

512 Input Output 512
Embedding Embedding
Inputs Outputs
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Positional Encoding
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 Use sine and cosine functions
of different frequencies

PE(o3zi) = sin(pos /100002 dmoer)

2i+1) — COS(pos/lOOOOZi/dmodel)
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* Easily learn to attend by relative positions

* Any fixed offset k, PE(pos+k) can be represented as a linear function of PE(pos)

lsin(pos + k)

sin(pos) cos(k) + cos(pos) sin(k)
cos(pos + k) =[

cos(pos) cos(k) — sin(pos) sin(k)

* Model will extrapolate to sequence lengths longer than the ones seen during training

[1] Vasvani A., et. al. Attention Is All You Need



Encoder

 Six Layers (stacked)

* Each layer has two sub-layers
* Multi-head attention (self-attention)

| Add & Norm
e Feed-Forward Add & Norm

* hidden layer dy = 2048, input and output = 512
« FFN(x)=ReLU(xW1 + bl) W2 + b2 Forward

Add & Norm

Multi-Head
Attention
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Encoder

 Six Layers (stacked)

* Each layer has two sub-layers
* Multi-head attention (self-attention)

* Feed-Forward
* hidden layer dy = 2048, input and output = 512

e FFN(x)=ReLU(xW1+bl) W2+ b2

* Residual connection
* Copy of data is fed to upper layer
* So that we can train deeper networks

weight layer
F(x) l relu .
weight layer identity

Add & Norm

g Feed
Residual .~ Forward

connection

Add & Norm

Multi-Head
Attention
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Encoder Encoder output =

LayerNorm [x + FFN
[LayerNorm [x + MultiHead (Q, K, V)11]

* Layer normalization

* In batch normalization, the statistics are computed across
the batch and are the same for each example in the batch Add & Norm

* In layer normalization, the statistics are computed across
: Feed
each feature and are independent of other examples
Forward
* Faster convergence

Add & Norm
Multi-Head
Attention

!

[1] Vasvani A., et. al. Attention Is All You Need




features

Batch Normalization

Batch normalization normalizes the input
features across the batch dimension

Same for all
training examples

batch
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are the same for each example in the batch

e Difficult to apply to recurrent
connections



features

Batch Normalization Layer Normalization

Batch normalization normalizes the input Layer normalization normalizes the
features across the batch dimension inputs across the features
batch
Same for all \
batch L ( )
training examples
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Decoder

 Six Layers (stacked)

* Each layer has three sub-layers
* Masked Multi-head attention
e Multi-head attention
* Feed-Forward

* Multi-head attention
e QOutput of Encoder is fed as Kand V
e Output of Masked Multi Head is fed as Q
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Decoder & Output

e Masked Multi-head attention

 Don’t want to look into future target sequence when
predicting current position

* Mask subsequent positions (shifted right)
e Output is fed to Multi-head attention as Q

* Output
* Fully connected layer
e Softmax
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BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova
Google Al Language



Masked Language Model (MLM) - Task-1

e Rather than always replacing the chosen
words with [MASK], the data generator will

_ _ do the following:
e 15% of tokens in random will be

chosen * 80% of the time: Replace the word with the
e 80% masked [MASK] token, e.g., my dog is hairy —
e 10% random my dog is [MASK]
e 10% unchanged and predicted e 10% of the time: Replace the word with a
e Sum of cross-entropy losses over all random word, e.¢., my dog is hairy — my
the masked tokens dog is apple

e 10% of the time: Keep the word un-
Changed, €.2.,my dog is hairy — my dog
is hairy. The purpose of this is to bias the
representation towards the actual observed
word.

[2] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding



Next Sentence Prediction: Task-2

: : Input = (crs] tn t to [MASK] st SEP
e To understand relationship between P [CLS] the man went to [MASK] store [SEP]

Sentences he bought a gallon [MASK] milk [SEP]
e 50% of the time next sentence is Label = rsnext
chosen, 50% some other random
sentence
e Binary classification (O - next Input = [cLs] the man [MASK] to the store [SEP]
sentence, 1- random) penguin [MASK] are flight ##less birds [SEP]

Label = notnext

[2] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding



BERT input representation:

o The input embeddings is the sum of the token embeddings, the
segmentation embeddings and the position embeddings.

/ / N / N N\ 4 N N /- N
Input [CLS] 1 my || dog is { cute W [SEP] he [ likes M play W ( ##ing W [SEP]
Token
Embeddings E[CLS] Emy Edog Eis Ecute E[SEP] Ehe EIikes Eplay EMing E[SEP]
+ + + + =+ + =+ + + + +
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
+ =+ + + o+ + o+ + + o+ +
Position
Embeddings Eo El Ez E3 E4 ES E6 E7 E8 E9 E10

[2] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding



BERT Model Details

e Pre-training corpus:

o BooksCorpus (800M words) and English Wikipedia (2,500M words)
o The first sentence receives the A embedding and the second receives the
B embedding

o 50% of the time B is the actual next sentence that follows A and

o 50% of the time it is a random sentence, which is done for the “next sentence
prediction” task.

o Sampled such that the combined length is 512 tokens
e Wordpiece embedding with 30k tokens
e Base Model:

o Number of layers = 12, hidden size = 768, number of heads = 12

[2] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding



BERT — Fine Tuning - sequence-level classification

o Special [CLS] word embedding

o The final hidden state (i.e., the output of the Transformer) for the first token

(Vector C)
o« New parameters added during fine-tuning are for a classification layer (K

classifier labels) W e RExH
o Label probabilities are computed with a standard softmax

P = softmax(CWT)
o All of the parameters of BERT and W are fine-tuned jointly to maximize
the log-probability of the correct label

[2] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding



BERT for All Tasks L enver

e (lassification
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Single Sentence Tagging Tasks (e.g NER)

No Begin If there are 10 classes,
Entity Person train on 10 classes
@) B-PER O

e % This dataset consists of 200k training words which
T have been annotated as
[ ¢ ][ T ]{ E J [ N ] « Person

+ Organization

* Location,
BERT « Miscellaneous

« Other (non-named entity)

Eicis E, E, Ey For fine-tuning, feed the final hidden

= — =" il represe.rlltati.on Ti for to each token i into

( ( ( | a classification layer over the NER label set
[CLS] Tok 1 Tok 2 Tok N
|
| Jim Hen f#son was a puppet ##eer
Single Sentence I-PER I-PER X 0 O 0 X

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER (Named Entity Recognition)

[2] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding



SQUAD — Question Answer

e Given a passage from Wikipedia (containing all the required information)
and a question, identify the relevant portion in the passage

o Identify start and end word constructing the answer

o Jointly learning the start and end position

[2] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding



The Black Death is thought to have originated in the arid plains of Central Asia,
where it then travelled along the Silk Road. reaching Crimea by 1343, From
there, it was most likely carried by Oriental rat fleas living on the black rats that
were regular passengers on merchant ships. Spreading throughout the
Mediterrancan and Eurcope, the Black Death is estimated to have killed 30-860%
of Europe’s total population. In total, the plague reduced the world population
from an estimated 450 million down to 350-375 million in the 14th century. The
world population as a whole did not recover to pre-plague levels until the 17th
century. The plague recurred occasionally in Europe until the 1%th century

Where did the black death originate?
Ground Truth Answers: the arid plains of Central Asia Central
Asia Central Asia

How did the black death make it to the Mediterranean and Europe?
Ground Truth Answers: merchant ships. merchant ships Silk Road

How much of the European population did the black death kill?
Ground Truth Answers: 30-60% of Europe’s total population 30-60%
of Europe’s total population 30-60%

SQUAD — Stanford Question Answering

Dataset



Start/End Span

SQUAD — Question Answer [ N

Given a question and a paragraph from Wikipedia
containing the answer, the task is to predict the BERT
answer text span in the paragraph. For example:

* Input Question: : :
Ecis) E - . Eh| E[SEP] E : . EM
Where do water droplets collide with ice
crystals to form precipitation? T U L L
[CLS] T$k .. ‘ Tﬁk
e Input Paragraph: | |
Precipitation forms as smaller droplets l
Question Paragraph

coalesce via collision with other rain drops

or ice crystals within a cloud.
The only new parameters learned during fine-tuning are a start vector
* Output Answer: and an end vector.

within a cloud

The probability of word i being the start of the answer span is

Represent the input question and paragraph as computed as a dot product between Ti and S followed by a softmax

a single packed sequence. over all of the words in the paragraph. Same way learn end vector

Question using the A embedding and the

paragraph using the B embedding. The training objective is the loglikelihood of the correct start and end
positions.

[2] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding



Sentence Pair Classification

Class
Label

E[CLS] E1 EN E[SEP] E1, EM
i g 1 LI LI
=)CH)- (D)=
| I
| |
Sentence 1 Sentence 2

(@) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG

QQP: Quora Question Pairs is a binary classification
task where the goal is to determine if two questions
asked on Quora are semantically equivalent.

MNLI: Multi-Genre Natural Language Inference:
Given a pair of sentences, the goal is to predict
whether the second sentence is an

« entailment

« contradiction, or

* neutral

with respect to the first one.

[2] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding



Single Sentence Classification (e.g Sentiment)

Class
Label

— =
) -
SST-2 The Stanford Sentiment Treebank:
Binary single-sentence classification task consisting

BERT of sentences extracted from movie reviews
with human annotations of their sentiment

E[CLS] E1 Ez EN
i S it Y i o
[CLS] Tok 1 Tok 2 Tok N

Single Sentence

(b) Single Sentence Classification Tasks:
SST-2, CoLA

[2] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
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Transformer-XL.:

Attentive Language Models
Beyond a Fixed-Length Context

Zihang Dai*'?, Zhilin Yang*'2, Yiming Yang!, Jaime Carbonell®,
Quoc V. Le?, Ruslan Salakhutdinov!
!Carnegie Mellon University, “Google Brain

{dzihang, zhiliny,yiming, jgc, rsalakhu}@cs.cmu.edu, gvl@google.com



Agenda

 Foundation for XLNet
* Transformer and BERT (already covered)
* Transformer XL



Problem Statement

e Attention is not recurrent, it can only deal with fixed-length context

[3] Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context



Problem Statement

e Attention is not recurrent, it can only deal with fixed-length context

* Context fragmentation: if context is long, it should be split up to segments

o O O O o O O O0|0 O O ©
o O O O o O O OO0 O Q
Yy
o O O O o O O O] O0 ® O
@ © o o @ © o o © © O
X % % “ X s 7 | % % X,
Segment 1 Segment 2 Limited Context

[3] Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context



Solve for

e Capture longer-term dependency

* Resolve context fragmentation

[3] Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context



Vanilla Training

& G a ]

Current Segment

[3] Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context



Vanilla Training

@ ¢ @ &

Current Segment

[3] Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context



Vanilla Training

& o & @

Current Segment

[3] Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context



Vanilla Training

* Information never flows across segments in either forward or backward pass

5 € .3 o) Q@ L & & é L & Q@
No information Flow No information Flow
(either forward or backward) (either forward or backward)

[3] Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context



Transformer-XL Training

Current Segment

Segment-1

[3] Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context



Transformer-XL Training

&

Fixed Memory Current Segment
(No grad)
Segment-1

[3] Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context



Transformer-XL Training

Fixed Memory Current Segment
(No grad)

Segment-1 Segment-2

[3] Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context



"

Transformer-XL Training

: the key k”_ ; and value VT 41

: are conditioned on the extended context hT 41 and
hence h”~! cached from the previous segment.

“
“
#
#
P
P
P
P
P
P

.....................

Fixed (No Grad New .\.n"_"lln‘nt

h77i = [SG(h7™") o hiii],

n n n T T
qT+17 T+1> VT+1 hT+1W h'r—i—lwkz ’ hT+1WU ’
h7,; = Transformer-Layer (q7 1, K711, Vri1) -

[3] Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context



Vanilla Prediction

* During evaluation, vanilla model consumes a segment to make only one
prediction at the last position, which is extremely expensive

© O O
©C O /O

Limited Context

O O O © O o
O O O O O O
O O O O o O

Limited Context

[3] Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context



Transformer-XL Prediction

e Transformer-XL uses representations (memory) from previous segments
instead of computing from scratch

Current Segment

[3] Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context



Transformer-XL Prediction

e Transformer-XL uses representations (memory) from previous segments
instead of computing from scratch

Current Segment

[3] Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context



Transformer-XL Prediction

e Transformer-XL uses representations (memory) from previous segments
instead of computing from scratch

Current Segment

[3] Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context



Summary

* Transformer model has weakness:
o Capturing long-term dependency and
o Resolving context fragmentation

* Transformer-XL suggests following to solve above problems

o Segment-level recurrence and
o Relative positional embedding so that recurrence works

[3] Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context
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XLNet:

Generalized Autoregressive Pretraining
for Language Understanding

Zhilin Yang*!, Zihang Dai*'?, Yiming Yang', Jaime Carbonell’,
Ruslan Salakhutdinov', Quoc V. Le?
ICarnegie Mellon University, ?Google Brain
{zhiliny,dzihang,yiming, jgc,rsalakhu}t@cs.cmu.edu, qvl@google.com



Autoregressive (AR) vs Autoencoding (AE)

AR language model (GPT) AE language model (BERT)
I T
X log py(x) = Z log pglx [ x) max log py(¥|X) = Z m, log py(x, | X)
=1 i =1
backward
| (masked token)
[[x1, x2, x3} x4, x5,/x6, x7, x8 |] [|x1, x2, x3| x4,|x5, x6, x7, x8|]
1 [ t [
forward bidirectional
Use observations from previous time steps Based on Transformer
to predict the value at the next time stamp Cath dependencies from both sides
Good at text generation Good at language understanding

[4] XLNet: Generalized Autoregressive Pretraining for Language Understanding



BERT’s Limitations

Model assumes that all masked tokens are independent
* e.g. New York is not
Generalized model should not rely on data corruption (masking)

<mask> token doesn’t appear in real world
It lacks long-term dependency

[4] XLNet: Generalized Autoregressive Pretraining for Language Understanding



XLNet

* Could we use the best of both worlds?
« Autoregressive and Autoencoding

 Could it be useful to mainstream NLP tasks?

[4] XLNet: Generalized Autoregressive Pretraining for Language Understanding



XLNet

W N

Autoregressive model not just going forward or
backward but with permutation on both sides
Uses two-Stream Self-Attention

Integrate recurrence mechanism - Transformer-XL

[4] XLNet: Generalized Autoregressive Pretraining for Language Understanding



Permutation Language Modeling

origin sequence

Forward AR

Backward AR

Permutation AR

[1’ 2’ 3’ 4’ 5’ 6’ 7’ 8]

_—————
[1’ Za 3, 4, 5’ 6’ 7a 8]

[8’ 7’ 6’ 5’ 4’ 3’ 2’ 1]

[3’ 2’ 5’ 6’ 8’ 1’ 7’ 4]

[4] XLNet: Generalized Autoregressive Pretraining for Language Understanding



Permutation Language Modeling

Masked Language Model

[ ‘New’, ‘York’, ‘is’, ‘a

[ <MASK>, <MASK>, ‘is’, ‘a’, ‘city’ ]

[ <MASK>, <MASK>,

|
|

b

, ‘city’ ]

‘ .

1S

b

b

4

d

b

, ‘city’

I t

Permutation Language Model

[ ‘New’, ‘York’, ‘is’, ‘a’, ‘city’ ]

|

, ‘city’t ‘New’, ‘York’ ]

[|‘is’, ‘a’, ‘city’| ‘New’, ‘York’ ]
I $

[4] XLNet: Generalized Autoregressive Pretraining for Language Understanding



Permutation Language Modeling

Permutation

[3, 2, 4, 1]

0
mem (9 X T X,

Factorization order: 32 22> 4 =2 1

[4] XLNet: Generalized Autoregressive Pretraining for Language Understanding



Permutation Language Modeling

Permutation

(4, 3, 1, 2] mem (©)

0
mem (9 X1 . X3 X4

Factorization order: 4 2 3 2> 1 =2 2

[4] XLNet: Generalized Autoregressive Pretraining for Language Understanding



Permutation Language Modeling

Permutation
[2, 4, 3, 1]

Left & Right

Factorization order: 2 2 42> 3 2 1

[4] XLNet: Generalized Autoregressive Pretraining for Language Understanding



Permutation Language Modeling

X3
h$?
Permutation
(1, 4, 2, 3] mem ) hgl)

Left & Right

0
mem( ) Xl X3 X4

Factorization order: 1 24> 2 2> 3

[4] XLNet: Generalized Autoregressive Pretraining for Language Understanding



Two Stream Self-Attention

[4] XLNet: Generalized Autoregressive Pretraining for Language Understanding



Two-Stream Self-Attention

From the input token corresponding to the token to predict
« Keep positional encoding

X3

 Remove embedding content
hy”
mem D hgl)

0
mem (9 X4 . X3 X4

Factorization order: 32 22> 4 =2 1

[4] XLNet: Generalized Autoregressive Pretraining for Language Understanding



Two-Stream Self-Attention mechanism

From the input token corresponding to the token to predict
« Keep positional encoding
« Query can be used to pass the positional encoding

 Remove embedding content
» Block the Values (embedding content)

[4] XLNet: Generalized Autoregressive Pretraining for Language Understanding



Two-Stream Self-Attention

Content stream attention

h: content attention A e
g: query attention
Lo J[ kv ]

(a)

same as the standard self-attention
(Can see self)

Query stream attention

(1)

81
Attention
KBIESS
) [10)e (190 (b

(b)

Does not have access to information
about the content x,; (Cannot see self)

[4] XLNet: Generalized Autoregressive Pretraining for Language Understanding



Two-Stream Self-Attention

Content stream attention Query stream attention

€Y
g

h: content attention Attention b AREIE
g: query attention [ Q ][ K.V ] [ Q ][ K,V ]
hS’ hy”

(a)

™)+ Attention(Q = g\, KV = h{"~1);0), (query stream: use z; but cannot see ., )

h(m) + Attention(Q = h(m D KV = h(m D:9), (content stream: use both z; and z, ).

[4] XLNet: Generalized Autoregressive Pretraining for Language Understanding



Two-Stream Self-Attention

. layer
Split view of Query Stream 9 osition

Position 4 View g:zn
Factorization order: [3, 2, 4, 1]

[4] XLNet: Generalized Autoregressive Pretraining for Language Understanding



mem'"

mem'?)

Two-Stream Self-Attention

; Split view of Query Stream
g“ : Position 1 View
Factorization order: [3, 2, 4, 1]

[4] XLNet: Generalized Autoregressive Pretraining for Language Understanding



Conclusion

XLNet: Generalized Autoregressive Pretraining for Language Understanding

. Pretrain without data e  Autoregressive LM

corruption (masking) . Utilizes bidirectional

. Using Permutation LM content

[4] XLNet: Generalized Autoregressive Pretraining for Language Understanding



Agenda:

* Advanced approaches
* Transformer

BERT

Transformer-XL

XLNet

MT-DNN



MT-DNN Multi-Task Deep Neural Networks for
Natural Language Understanding

Xiaodong Liu , Jianfeng Gao Pengcheng He , Weizhu Chen
Microsoft Research Microsoft Dynamics 365 Al



MT-DNN Objective:

* Learn representations across multiple Natural Language
Understanding (NLU) tasks

* Leverages
* large amount of cross-task data

* benefits from regularization effects

* more general representation
* help adapt new tasks and domains

[5] Liu X. et. al. MT-DNN Multi-Task Deep Neural Networks for Natural Language Understanding



Approaches:

1. Multi-task learning

* Learn multiple tasks jointly so that knowledge learned in one task can
benefit other tasks

 Addresses:

 Lack of large amount of supervised data
» Leverage supervised data from many related tasks

 Overfitting one specific task

« Multi-task learning gains from regularization effect
» Learned Representation is universal across tasks

« Adoption to New Domain with fewer dataset

[5] Liu X. et. al. MT-DNN Multi-Task Deep Neural Networks for Natural Language Understanding



Approaches:

2. Language model pre-training
« Utilizes large amount of unlabeled data (eg. BERT)
* Fine tune pre-trained model for specific NLU task

(L:;?)S; Start/End Span
—8 2090
EAEN C)E) - o))
BERT BERT
Eicus) E, E, En Eas || E | - E,, ==l B e =
i S I 1 L] LI L L] L LI
[CLS] Tok 1 Tok 2 Tok N ([CLS] H i | | e I( sex H Tok |

| | |
|

| |

Single Sentence Question Paragraph




NLU tasks:

* Single Sentence Classification
 Text Similarity Scoring
« Pairwise Text Classification

* Relevance Ranking

[5] Liu X. et. al. MT-DNN Multi-Task Deep Neural Networks for Natural Language Understanding



Architecture of MT-DNN Model

Task Specific s s .
Layers
l,: context embedding vectors, one for each token.
Transformer Encoder (contextual embedding layers)

Shared

Layers I

across l1: input embedding vectors, one each token.
all tasks I

Lexicon Encoder (word, position and segment)

:

X: a sentence or a pair of sentences

[5] Liu X. et. al. MT-DNN Multi-Task Deep Neural Networks for Natural Language Understanding



Architecture of MT-DNN Model

. Single-Sentence Pairwise Text Pairwise Text Pairwise
Task Specific Classification Similarity Classification Ranking
Laye rs (e.g., ColA, SST-2) (e.g., STS-B) (e.g., RTE, MINLI, (e.g., QNLI)
WNLI, QQP, MRPC)
1 t T 1

Shared
Layers
across

all tasks

[5] Liu X. et. al. MT-DNN Multi-Task Deep Neural Networks for Natural Language Understanding



MT-DNN Model Layers

Single-Sentence Pairwise Text Pairwise Text Pairwise
Classification Similarity Classification Ranking
(e.g., ColA, SST-2) (e.g., STS-B) (e.g., RTE, MINLI, (e.g., QNLI)

WNLI, QQP, MRPC)

|

[, : context embedding vectors, one for each token

T

Transformer Encoder (contextual embedding layers)

T

l;: input embedding vectors, one each token

T

Lexicon Encoder (word, position and segment)

T

X : a sentence or a pair of sentences

Operations necessary for classification, similarity
scoring, or relevance ranking

For each task, additional task-specific layers generate
task-specific representations

Shared semantic representation that is trained by
multi-task objectives

Generates a sequence of contextual embeddings in [2

Transformer encoder captures the contextual information
for each word via self-attention

Sequence of embedding vectors, one for each word, in 1

[5] Liu X. et. al. MT-DNN Multi-Task Deep Neural Networks for Natural Language Understanding



Lexicon Encoder (I1);

Input [CLS] ’ my dog is ‘ cute ’ [SEP] he ‘ likes H play ’ ##ing ’ [SEP]
Token
Embeddings E[CLS] Emy Edog Eis Ecute E[SEP] Ehe Elikes Eplay E##ing E[SEP]
+ -+ += + + + -+ + + -+ +=
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
+= -+ += + -+ + -+ + + -+ +=
Position
Embeddings EO El E2 E3 E4 E5 E6 E7 E8 E9 E10
Single Sentence: Maps X into a sequence of input embedding vectors,
The input X =f{Xxy;...; Xy} Iis asequence of one for each token, constructed by summing
tokens of length m.  the corresponding word
First token x, is always the [CLS] token. « segment and

« positional embeddings

Sentence Pair:
Separate two X; and X, sentences with a special

token [SEP]
[5] Liu X. et. al. MT-DNN Multi-Task Deep Neural Networks for Natural Language Understanding



Transformer Encoder (I2):

Class Class
Label Label
I, : context embedding vectors, one for each token P :
: - o=l GO (el - :
Transformer Encoder (contextual embedding layers) BERT BERT
Bas || E4 En Eiser || Ef Ew Eis E, E, EN
l;: input embedding vectors, one each token -
= LI 8 ey B ey B iy ulln < I ol s
T;’k ( Tﬁk \” [SEP] W[ T‘;" W ( T,f;k W [CLS] Tok 1 Tok 2 Tok N
\—‘—1 |
Lexicon Encoder (word, position and segment) |
Sentence 1 Sentence 2 Single Sentence
(a) Sentence Pair Classification Tasks: (b) Single Sentence Classification Tasks:
X : a sentence or a pair of sentences MNLI, QQP, QNLI, STS-B, MRPC, SST-2, ColLA
RTE, SWAG
(Lejr?ce§daern:glmzyetrhzl?rlmrecttlr?enarle-greanr’][:]’:ioorrrper or « BERT model learns the representation via pre-
. P putrep vectors training and adapts it to each individual task via
(I1) into a sequence of contextual embedding fine-tuning

vectors C ¢ Rxm
« MT-DNN learns the representation using multi-

task objectives
[5] Liu X. et. al. MT-DNN Multi-Task Deep Neural Networks for Natural Language Understanding



MT-DNN Model Layers Again for Ref:

Single-Sentence Pairwise Text Pairwise Text Pairwise
Classification Similarity Classification Ranking
(e.g., ColA, SST-2) (e.g., STS-B) (e.g., RTE, MINLI, (e.g., QNLI)

WNLI, QQP, MRPC)

[, : context embedding vectors, one for each token

T

Transformer Encoder (contextual embedding layers)

T

l;: input embedding vectors, one each token

T

Lexicon Encoder (word, position and segment)

T

X : a sentence or a pair of sentences

[5] Liu X. et. al. MT-DNN Multi-Task Deep Neural Networks for Natural Language Understanding



4 NLU tasks

P(c|X)

(e.g., probability of
labeling text X by ¢)

!

Sim(Xl,Xz)
(e.g., semantic
similarity between X;
and X, )

!

PI‘(R IP, H)
(e.g., probability of
logic relationship R
between P and H)

1

Rel(Q, A)

(e.g., relevance score
of candidate answer A

given query Q)

I

Single-Sentence
Classification
(e.g., ColA, SST-2)

Pairwise Text
Similarity
(e.g., STS-B)

Pairwise Text
Classification
(e.g., RTE, MNLI,
WNLI, QQP, MRPC)

Pairwise
Ranking
(e.g., QNLI)

I

l,: context embedding vectors, one for each token.

]

*

!

[5] Liu X. et. al. MT-DNN Multi-Task Deep Neural Networks for Natural Language Understanding



1 Single Sentence Classification:

Pr(c]X)
(e.g., probability of
labeling text X by ¢)

-

Single-Sentence
Classification
(e.g., ColA, SST-2)

C‘X SOftmaX "" 99T ° X (1)
class (i.e., input task-specific contextual
the sentence parameter embedding
sentiment) of token
[CLS]

!

[CLS]

I ] !

Lower Level Shared Layers
*
X : asentence

[5] Liu X. et. al. MT-DNN Multi-Task Deep Neural Networks for Natural Language Understanding‘



2 Pairwise Text Similarity

Slm Xl,XQ — g WSTS X) (2)

Sl 1)
(e.g., semantic

similarity between X, input sigmoid task- contextual
and X3 ) sentence function specific ~ embedding
T X pair parameter  of token
[CLS]
Pairwise Text
Similarity 1
(e.g., STS-B) 9<Z) = Tfexp(—2)

I ! ! I

Lower Level Shared Layers
*
[CLS] X : a pair of sentences

[5] Liu X. et. al. MT-DNN Multi-Task Deep Neural Networks for Natural Language Understanding



3 Pairwise Text Classification

P-(R|P,H)
(e.g., probability of
logic relationship R
between P and H)

!

Pairwise Text
Classification
(e.g., RTE, MINLI,
WNLI, QQP, MRPC)

* Premise P = (py, ..., pm) Of mwords

* Hypothesis H = (h4, ..., h,) of n words

« Find a logical relationship R between P and H.
« Stochastic Answer Network (SAN):

« Uses uses multi-step reasoning. Rather than directly predicting
the entailment given the input, it maintains a state and
iteratively refines its predictions. (see next slide)

* Aone-layer classifier is used to determine the relation at each
step k:

PF = softmax(W3 [s¥; x"; |sF — x*|;s% - x*]).

r

P, = avng??, P,rl, ...,P,,,K_l])- (4)

Each Pr is a probability distribution over all the relations R

I

I ] !

Lower Level Shared Layers

T
X : a pair of sentences
[5] Liu X. et. al. MT-DNN Multi-Task Deep Neural Networks for Natural Language Understanding



4 Pairwise Ranking

» For agiven Q, rank all of its candidate
answers based on their relevance scores.

Rel(Q, 4) Rel(Q,A) =g (WQNLI X) (9)

(e.g., relevance score
of candidate answer A \/ /
given query Q)

TX input  sigmoid  task- contextual
sentence function  specific embedding
Pairwise pair parameter of token
Ranking [CLS]
(e.g., QNLI)

I I ] !

Lower Level Shared Layers
*
[CLS] X : a pair of sentences

[5] Liu X. et. al. MT-DNN Multi-Task Deep Neural Networks for Natural Language Understanding



Objectives for tasks (1/2):

For the classification tasks (i.e., single-
sentence or pairwise text classification), use

the cross entropy loss as the objective:

- LXK )log(P (X)), (©)

where 1 (X, c) is the binary indicator (0 or 1) if
class label c is the correct classification for X, and
Pr(.) is defined by e.g., Equation 1 or 4.

P.(¢|X) = softmax(Wier-x), (1)

P, :avg([PTE),Prl,...,PrK_l])- (4)

For the text similarity tasks where each sentence
pair is annotated with a real valued score y, we use
the mean squared error as the objective:

(y — Sim(X1, X2))*, (7)

where Sim(.) is defined by Equation 2.

Sim(Xla X2) — g(WgTS | X)7 (2)

g(Z) — 1—|—e>ql)(—z)

[5] Liu X. et. al. MT-DNN Multi-Task Deep Neural Networks for Natural Language Understanding



Objectives for tasks (2/2):

« The objective for the relevance ranking tasks follows
the pairwise learning-to-rank paradigm

« Given a query Q, obtain a list of candidate answers A — Z P.(A1]Q), (8)
which contains a positive example A+ that includes the (Q,A%)
correct answer and |Al-1 negative examples.

~ exp(Rel(Q, AT))
P.(AT|Q) = ZA’EA exp(7Rel(Q,A"))’

where Rel(.) is defined by Equation 5
Rel(Q, A) = g(Wonpr - %), (5)

7Y is a tuning factor determined on held-out data.
In experiment, it is setto 1.

9)

* Minimize the negative log likelihood of the positive
example given queries across the training data

[5] Liu X. et. al. MT-DNN Multi-Task Deep Neural Networks for Natural Language Understanding



1. Training: Pre-Training

BERT:

« The parameters of the lexicon encoder and
Transformer encoder are learned using two
unsupervised prediction tasks:

* masked language modelling
* next sentence prediction.

_<

Algorithm 1: Training a MT-DNN model.
~ Initialize model parameters © randomly.
Pre-train the shared layers (i.e., the lexicon
_encoder and the transformer encoder).
Set the max number of epoch: epochaz-
//Prepare the data for T’ tasks.

fortinl,2,....T do
| Pack the dataset ¢ into mini-batch: Dj.

end

for epoch in 1,2, ..., epochq. do
1. Merge all the datasets:

D =Di{UDs...U Dp
2. Shuffle D

[5] Liu X. et. al. MT-DNN Multi-Task Deep Neural Networks for Natural Language Understanding



2. Multi-Task Fine tuning stage

for epoch in 1,2, ..., epoch,q. do
1. Merge all the datasets:

end

D

= D1 UD>...U Drp

2. Shuffle D
for b; in D do

end

//bs is a mini-batch of taskt
3. Compute loss : L(© - — > L(X, ¢)log(P(c| X)), (6)

L(©) = Eq. 6 for cla331ﬁcat10n
L(©) = Eq. 7 forregression (U — Sim(X71, X2))?, (7)
L(©) = Eq. 8 for ranking

_l_
4. Compute gradient: V(©) T Z P.(A7]Q), (8)
5. Update model: © = © — eV(0O) (Q.A™)
P.(AT|Q) = exp(YRel(Q, AT)) 9)

> areaexp(yRel(Q,A"))

[5] Liu X. et. al. MT-DNN Multi-Task Deep Neural Networks for Natural Language Understanding



Summary:

* Advanced approaches for Neural Conversational Al
* Transformer — Attention Is All You Need

BERT

Transformer-XL

XLNet

MT-DNN
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BERT for
Joint Intent Classification and Slot Filling

Qian Chen, Zhu Zhuo,Wen Wang

Speech Lab, DAMO Academy, Alibaba Group
ftanging.cq, zhuozhu.zz, w.wangglalibaba-inc.com



Problem Statement — Customer Support Chatbot

Create a conversational agent (aka Chatbot) for customer service where
the agent should be able to converse with customers on their issues
(e.g., delivery, return, refund, cancellation etc.). A realistic conversation
should be able to handle

Essential task: Multiple intents and Slot filling.



Core Problem: Intent Detection and Slot Filling

Query | Find me a movie by Steven Spielberg
Intent find_movie
Frame Slot genre = movie

directed_by = Steven Spielberg

An example from user query to semantic frame.



Core Problem: Multiple Intent Detection and Slot Filling

Book flight from <departure city> to <arrival city> on <date>
Single Intent:

Book Flight (intent)
Arrival city, Departure city, date (slots)

Yes, book the flight

Multiple intent - Confirmation and book flight



BERT for
Joint Intent Classification and Slot Filling

* Poor Generalisation capability:
e Suffer from small-scale human-labeled training data especially for rare words.

* BERT facilitates pre-training deep bidirectional representations on
large-scale unlabelled corpora

* Created state-of-the-art models for a wide variety of natural language
processing tasks after simple fine-tuning

[6] Chen Q. BERT for Joint Intent Classification and Slot Filling



Approaches

 Slotis at word level
 |ntentis at Sentence level

Separately learn:

* Slot filling
* |ntent Detection

[6] Chen Q. BERT for Joint Intent Classification and Slot Filling



Jointly learn Intent and Slot filling

Recent approaches based on:

e BERT
* Sequence
* Transformer and Sequence

[6] Chen Q. BERT for Joint Intent Classification and Slot Filling



BERT for Joint Intent Classification and Slot Filling

To jointly model intent classification and slot
filling, the objective is formulated as:

N
p(y',y'lx) = p(y'le) | [ p(y;le)

n=1

The learning objective is to maximize the conditional
robabilit r .S
P Y oy ytle)

The model is finetuned end-to-end via minimizing
the cross-entropy loss.

[6] Chen Q. BERT for Joint Intent Classification and Slot Filling



BERT for Joint Intent Classification and Slot Filling

AN N
Input [CLS] my dog is ( cutew [SEP] he ( likes H play W ##ing ’ [SEP]
Token
Embeddings E[CLS] Emy Edog Eis Ecute E[SEP] Ehe EIikes Eplay E##ing E[SEP]
=+ = =+ == = = e =+ =+ = e
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
=+ 3= =+ =+ &= &= e =+ =+ 3= e
Position
Embeddings EO E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

BERT uses: Word embedding, Segment Embedding and Position Embedding
For single sentence classification and tagging tasks, the segment embedding has no discrimination

[6] Chen Q. BERT for Joint Intent Classification and Slot Filling



BERT for Joint Intent Classification and Slot Filling

Labo

=

EEAEN
BERT

E[CLS] E, E, Ex

[CLS] Tok 1 Tok 2

Single Sentence

A special classification embedding ([CLS]) is inserted as the first token
and a special token ([SEP]) is added as the final token.

Given an input token sequence x = (x1; : : :; XT ), the output of BERT is

The pre-trained BERT model provides a powerful context-dependent
sentence representation and can be used for various target tasks, i.e.,
intent classification and slot filling, through the finetuning

procedure.

[6] Chen Q. BERT for Joint Intent Classification and Slot Filling



BERT for Joint Intent Classification and Slot Filling

Slot filling

input: play the song little robin redbreast

Based on the hidden state of the first special token ([CLS]), denoted h1,
the intent is predicted as: y' = softmax(Wh; + b') ;

[6] Chen Q. BERT for Joint Intent Classification and Slot Filling



BERT for Joint Intent Classification and Slot Filling

Slot filling

Trm @ CtTm ) C Trm ) ( Trm )
Trm @ ( Trm ) ( Trm ) ( Trm )
E> Er2 E1-1 Er

play C##bre) C##ast) ([SEP])

input: play the song little robin redbreast

00

. i
N

softmax layer to classify over the slot filling labels.
ys, = softmax(Wsh, + b%) ; n belongsto 1to N

where h, is the hidden state corresponding to the first sub-token of word x,,.
[6] Chen Q. BERT for Joint Intent Classification and Slot Filling



Datasets:

ATIS dataset: Snips dataset:
Includes audio recordings of people making flight Snip personal voice assistant.
reservations.
Utterances:
Utterances:
« Training set: 13,084
« Training set: 4,478 * Development set: 700
* Development set: 500 * Test set 700

» Test set 893

For training set:
For training set: « Slots labels: 72
« Slots labels: 120 * Intent types: 7
* Intent types: 21

[6] Chen Q. BERT for Joint Intent Classification and Slot Filling



Model: BERT for Joint Intent Classification and Slot Filling

Used English uncased BERT-Base Fine-tuning, all hyper-parameters are tuned on the

model: development set.

« 12 layers The maximum length is 50.

« 768 hidden states The batch size is 128.

* 12 heads Adam is used for optimization with an initial learning rate
of 5e-5.

BERT is pre-trained on BooksCorpus The dropout probability is 0.1.

(800M words) The maximum number of epochs is selected from [1, 5,
10, 20, 30, 40].

[6] Chen Q. BERT for Joint Intent Classification and Slot Filling



Result: BERT for Joint Intent Classification and Slot Filling

Snips ATIS
Models Intent Slot Sent Intent Slot Sent
RNN-LSTM (Hakkani-Tiir et al., 2016) 969 87.3 732 926 943 80.7
Atten.-BiRNN (Liu and Lane, 2016) 96.7 87.8 74.1 91.1 942 789
Slot-Gated (Goo et al., 2018) 970 888 755 941 952 82.6
Joint BERT 986 97.0 928 975 96.1 88.2
Joint BERT + CRF 984 9677 926 979 96.0 88.6

NLU performance on Snips and ATIS datasets.
The metrics:

 Intent classification accuracy
* slot filling F1

» sentence-level semantic frame accuracy (%)

[6] Chen Q. BERT for Joint Intent Classification and Slot Filling



A case in the Snips dataset.

Query need to see mother joan of the angels in one second

Gold, predicted by joint BERT correctly

Intent SearchScreeningEvent
Slots O O O B-movie-name I-movie-name I-movie-name [-movie-name I-movie-name B-timeRange

[-timeRange I-timeRange

Predicted by Slot-Gated Model (Goo et al., 2018)

Intent BookRestaurant
Slots O O O B-object-name I-object-name I-object-name I-object-name I-object-name B-timeRange
[-timeRange I-timeRange

[6] Chen Q. BERT for Joint Intent Classification and Slot Filling



Summary:

* Advanced approaches for Neural Conversational Al
* Transformer — Attention Is All You Need
* BERT
* Transformer-XL
* XLNet
* MT-DNN

* Application of BERT for Intent Detection and Slot filling

[6] Chen Q. BERT for Joint Intent Classification and Slot Filling
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